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Individual terms in the entropy transport equation are used today to analyse entropy production and
dissipation within the flow. The underlying idea is that the local entropy production tells us where
a particular design can be improved. However, very little attention has been paid up to now to the
analysis of the full entropy transport equation. The present paper focuses on this topic and shows
similarity solutions of the entropy transport equation. Two cases have been investigated as examples:
laminar flow over a flat plate and flow between converging and diverging parallel plates, so called
Jeffery–Hamel flows. Thus, similarity solutions have been derived for the boundary layer equations as
well as for an analytical solution of the Navier–Stokes equations. These solutions show nicely the vari-
ation of all different terms in the entropy transport equation and highlight also restrictions under which
such solutions can be obtained.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

An efficient use of energy is one of the major objectives in the
design of many technical systems today. This can only be achieved,
if the Second Law of thermodynamics is taken into account, since
the amount of available work is closely linked to the amount of
entropy production (see e.g. [1]). Thus, a thermal apparatus
producing less entropy by irreversibility destroys less available
work. This increases the total efficiency of the thermal system. The
amount of entropy produced can be used directly as an efficiency
parameter of the system (see e.g. [2]). Second Law and entropy
production analysis have therefore been widely used to evaluate
the sources of irreversibilities in various components and systems.
Some examples are given in [3–6]. Kock and Herwig [4] analysed
the entropy production in incompressible turbulent shear flow.
They developed wall functions for the entropy production terms
and incorporated them into a CFD code. As an example pipe flow
with heat transfer was analysed and compared to results from
a direct numerical simulation with special emphasis on the entropy
production. Andreozzi et al. [5] studied numerically the local and
global entropy generation rates in natural convection in air in
a vertical channel. Results of entropy generation analysis are
obtained by solving the entropy generation equation based on the
velocity and temperature data. Abu-Hijleh and Heilen [6] investi-
gated the entropy generation due to laminar natural convection
ax: þ49 711 685 62317.
rt.de (B. Weigand).

son SAS. All rights reserved.
over a heated rotating cylinder. They found that the entropy
generation increased as the Reynolds number and buoyancy
parameter increased.

The entropy transport equation has long been well-known (see
e.g. [7,16]). However, in the past interest mostly focused on some
terms in the equation, in particular the entropy production term. To
the best knowledge of the present authors no one has investigated
similarity solutions of the entropy transport equation. Obviously,
there must be some similarity solutions also for this equation, if we
assume self-similar flow and self-similar heat transfer. However, it
is worth looking at such solutions, because, in deriving similarity
solutions, restrictions are normally pointed out for the resulting
boundary conditions. In addition, self-similar solutions result in
expressions for all terms of the entropy transport equation, solely
dependent on one coordinate.
2. Analysis

The thermodynamic quantity entropy is a state variable. For the
entropy transport the following differential transport equation can
be derived [7,16]

r
Ds
Dt
¼ �div

�q
T

�
þ FDis

T
þ FCond

T2 (1)

In Equation (1) the term on the left-hand side of the equation
denotes the total change of entropy, the terms on the right-hand
side of the equation denote the diffusion, viscous and thermal
entropy generation. If we restrict the further investigations to
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Fig. 1. Geometrical configuration and coordinate system for a flow over a flat plate.

Nomenclature

a thermal diffusivity [m2/s]
cp specific heat at constant pressure [J/(kg K)]
cv specific heat at constant volume [J/(kg K)]
C Chapman–Rubesin parameter, ¼ rm=ðrNmNÞ [–]
F, G, H functions [–]
h0 specific total enthalpy [J/kg]
K constant for Jeffery–Hamel flows [–]
k thermal conductivity [W/(m K)]
MaN free-stream Mach number, ¼ uN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kRTN
p

[–]
p pressure [Pa]
q heat flux [W/m2]
Pr Prandtl number, ¼ n=a [–]
r radial coordinate [m]
R specific gas constant [J/(kg K)]
s specific entropy [J/(kg K)]
T temperature [K]
Tref reference temperature [K]
u, v, w velocity components [m/s]
uN free-stream velocity [m/s]
vr; v4 radial and tangential velocity component [m/s]
x, y, z coordinates [m]

Greek symbols
a half opening angle of the channel [–]
r density [kg/m3]
h similarity coordinate [–]
4 angle [–]
f enthalpy ratio [–]
m dynamic viscosity [kg/(m s)]
n kinematic viscosity, ¼ m=r [m2/s]
k specific heat ratio, ¼ cp=cv [–]
z modified coordinate [kg/(m s)]
FDis entropy dissipation [W/m3]
FCond entropy generation by heat transfer [W K/m3]
J stream function [kg/(m s)]

Indices
N free-stream
w at the wall
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laminar flows, Equation (1) can be written for a stationary flow in
a Cartesian coordinate system (x, y, z) with the velocity components
(u, v, w) as follows
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For a two-dimensional boundary layer type flow, with the main
flow, u, in x-direction, Equation (2) simplifies by invoking the usual
boundary layer simplifications [8] to
r

�
u

vs
vx
þ v

vs
vy

�
¼ v

vy

�
k
T

vT
vy

�
þ m

T

�
vu
vy

�2

þ k
T2

�
vT
vy

�2

(3)

Because the entropy is a thermodynamic state variable, we always
have for a simple system in addition to Equation (3) a relation
between the entropy and two other state variables, like

s ¼ sðp; TÞ (4)

For an ideal gas, this might result in the equation

ds ¼ cv
dT
T
� R

dr

r
; (5)

where for an incompressible flow, with dr¼ 0, the second term on
the right-hand side of equation (5) is zero and also cv¼ cp¼ c. By
using equations (4) and (5), the flow is assumed to evolve through
a series of quasi-equilibrium states.

In the following, consideration is given to flow over a flat plate,
which is a boundary layer type flow and to a flow through
a converging or diverging planar nozzle (Jeffery–Hamel flow),
where the flow permits an analytical solution of the full Navier–
Stokes equations.
2.1. Flow over a flat plate

The flow over a flat plate is sketched in Fig. 1. In the following,
consideration is given to the case of a compressible flow over a flat
plate. For this case similarity solutions for the entropy transport
equation will be derived. Let us consider a laminar, compressible
flow over a flat plate. The boundary layer equations are given by
(see e.g. Kays et al. [8] or Weigand [9])
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where h0 is the specific total enthalpy, which is defined for
a boundary layer flow ðv� uÞ by

h0 ¼ cpT þ 1
2

�
u2 þ v2

�
¼ cpT þ 1

2
u2 (9)

The system of equations (6)–(8) is strongly coupled by density. In
addition, the fluid properties may no longer be considered
constant, due to the high velocities under consideration. It can be
assumed that the dynamic viscosity can be approximated by
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mðTÞ
m
�

Tref

� ¼
 

T
Tref

!u

; 0:5 � u � 1 (10)

where Tref is a reference temperature. The density is related to the
pressure and the temperature by a thermal state equation and we
assume that the fluid under consideration can be considered as an
ideal gas. Thus,

r ¼ p
RT

(11)

In addition, we assume that cp is constant. The set of partial
differential equations (6)–(8) has to be solved together with
equations (10) and (11) and the following boundary conditions

x ¼ 0 : u; v;h0 given
y ¼ 0 : u ¼ v ¼ 0; h0 ¼ hW
y/N : u ¼ uNðxÞ; h0 ¼ h0N

(12)

It is convenient to introduce a stream function into the compress-
ible boundary layer equations defined by

ru ¼ vJ

vy
; rv ¼ �vJ

vx
(13)

In addition, the following new coordinates are commonly
introduced

z ¼ rNuN

Z y

0

r

rN
dy; x ¼

Z x

0
rNuNhN dx (14)

Similarity solutions of the compressible boundary layer equations
have been investigated for example by Li and Nagamatsu [11] and
a good overview on this subject can be found for example in
Schlichting [10]. One can derive the similarity equations for the
flow and the temperature field by introducing the following new
variables into equations (6)–(8)

h ¼ 2ffiffiffiffiffiffi
2x
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ffiffiffiffiffiffi
2x
p

f ðhÞ; f ¼ h0

h0N
(15)

This results in
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These two coupled ordinary differential equations have to be solved
together with the following boundary conditions

h ¼ 0 : f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; fð0Þ ¼ fW
h/N : f 0ðNÞ ¼ 1; fðNÞ ¼ 1

(18)

The quantity C, which appears in the above equations, is the
Chapman–Rubesin parameter, which can be described as a function
of temperature by using equations (10) and (11).

C ¼ rm

rNmN
; Pr ¼ mcp

k
;
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In order to guarantee that the equations (16) and (17) form a set of
ordinary differential equations, any dependence on x must cancel
out from these equations. This fact leads to the following restric-
tions on the coefficients in these equations:
� The Prandtl number must be a constant or only depend on h.
� The expression ð2x=uNÞ ðduN=dxÞ ¼ b has to be constant,

which means that uN ¼ C1xm.
� Finally, the expression ðu2

N=h0NÞ ¼ 2ð1þ ð2=ðk� 1ÞMa2
NÞÞ

�1

has to be constant, or the Prandtl number must be equal to one.
For most gases the assumption that Pr¼ 1 is reasonable. If this
is not the case, then either the Mach number
ðMaN ¼ uN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kRTN
p

Þ is constant or the Mach number is
sufficiently large, so that u2

N=h0N can be approximated by 2.

Let us now introduce the similarity variables, with which one
can obtain similarity solutions for the flow and enthalpy field, into
the entropy transport equation (3). For the individual terms in
equation (3) one obtains after some algebra:
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Production term by heat transfer:
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where the following abbreviations have been used
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Combining the equations (20)–(23) and inserting into equation (3)
results in
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The entropy transport equation (25) has to be solved with the
boundary condition

~s ¼ 0; for h/N (26)

In the above equations the prime denotes the derivative of the
quantity with respect to the similarity variable h. In order to
guarantee that equation (25) is a similarity equation, no depen-
dence on x is allowed. This means that E must be constant. Having
h0N ¼ const:, this is only possible if uN ¼ const: This means that
one gets a stronger restriction for similarity solutions for the
entropy transport equation than for the energy equation (where we
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had the choice to assume that either E¼ const. (and therefore
uN ¼ const:) or that Pr¼ 1.

Similarity solutions for the entropy transport equation for an
incompressible flow over a flat plate can be obtained analogously.

2.2. Jeffery–Hamel flows

We next develop a similarity solution of the entropy transport
equation in the full Navier–Stokes equations, describing the flows
between convergent and divergent flat plates as shown in Fig. 2.
Detailed discussions of these Jeffery–Hamel flows can be found in
[10,12–14]. Here, the velocity and the temperature distributions
depend only on the angle 4, i.e. the tangential velocity component
v4 ¼ 0 and the radial velocity component vr is given by [10]

vr ¼
m

rr
Fð4Þ (27)

Inserting the results for v4 and vr into the Navier–Stokes and the
energy equations result in ordinary differential equations for the
velocity field ðFð4ÞÞ and temperature field ðGð4ÞÞ. The function Fð4Þ
can be obtained from the solution of the following ordinary
differential equation

F2 þ 4F þ F 00 þ K ¼ 0; Fð�a ¼ 0Þ (28)

which has been obtained from the momentum equations for an
incompressible fluid [10]. The quantity K is a constant and is given
by the radial pressure gradient ðK ¼ �r3=ðrn2Þ dpW=drÞ.

The temperature field is also only dependent on the angle 4 and
has the form [10]

T � TW

m2=r2 cv ¼
1
r2Gð4Þ (29)

Here the function Gð4Þ is the solution of the following ordinary
differential equation
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�
¼ 0; Gð�a ¼ 0Þ (30)

which has been obtained from the energy equation [10]. The
entropy transport equation (2) has to be transformed into polar
coordinates, because the velocity and temperature field for these
types of flows are already known in these coordinates. One obtains
for Jeffery–Hamel flows after some effort

rvr
vs
vr
¼k

T

 
v2T
vr2þ

1
r

vT
vr
þ 1

r2

vT
v4

!
� k

T2

 �
vT
vr

�2

þ1
r2

�
vT
v4

�2
!

þm

T

 
2
�

vvr

vr

�2

þ1
r2

�
vvr

v4

�2

þ2
v2

r

r2

!
þ k

T2

"�
vT
vr

�2

þ1
r2

�
vT
v4

�2
#

(31)

In this equation, the term on the left-hand side of equation (31)
represents the entropy convection, while the first two terms on the
right-hand side are the diffusion terms. The third term is the
Fig. 2. Geometrical configuration and coordinate system for Jeffery–Hamel flows.
entropy production by viscous dissipation and the last term is the
production term by heat transfer.

Let us now introduce the similarity variables, with which one
can obtain similarity solutions for the flow field and temperature
field, into the entropy transport equation (31). For the individual
terms in equation (31) one obtains, after some algebra:
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Dissipation term:
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Production term by heat transfer:
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Introducing the individual terms into the entropy transport equa-
tion (31) results in
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1
r3

�
4Gþ G00

�
þ mn

r3

�
4F2 þ

�
F 0
�2
�

(36)

For equation (36) similarity solutions for the entropy field can only
be found if both sides of the equation are only dependent on 4 and
not on r. Let us assume a functional relationship for the entropy,
given by

s� s0 ¼ cvHð4Þ ln
T
T0

(37)

One can show that this satisfies equation (36) and, after some
algebra, one obtains Hð4Þ ¼ 1, i.e. the solution of equation (36) for
similarity solutions is equal to
Fig. 3. Velocity distribution u=uN as a function of h for a flow over a flat plate.



Fig. 4. Distribution of the dimensionless entropy difference as a function of h for a flow
over a flat plate.

Fig. 6. Distribution of the dissipation term of the entropy transport equation as
a function of h for a flow over a flat plate.
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s� s0 ¼ cv ln
T
T0

(38)

However, this is the state equation for the entropy for an incom-
pressible flow (cv¼ cp¼ c). This shows that the entropy difference
can be predicted locally by this equation. However, equation (38)
cannot tell us the individual entropy distributions of diffusion,
production and dissipation.

3. Results and discussion

The real advantage of the similarity solutions of the entropy
transport equations is that all individual terms in equation (1)
like convection, diffusion, dissipation and production by heat
transfer are only functions of the similarity coordinate. This means
that we can visualize them very easily across the boundary layer
and in the whole flow domain. Furthermore, these terms can be
Fig. 5. Distribution of the diffusion term of the entropy transport equation as a func-
tion of h for a flow over a flat plate.
used to analyse the loss mechanisms in these types of flows.
In the following distributions of these individual terms are
plotted as functions of the similarity coordinate for the two
investigated flows.

3.1. Flow over a flat plate

The similarity equations for the flow and temperature, which
are given by equations (16) and (17), can easily be solved numeri-
cally by a shooting method, using a fourth order Runge–Kutta
method [15]. The distribution of the entropy and all individual
terms can then be obtained from equations (20)–(25). The
following results have been obtained as an example for the quan-
tities TW¼ 388.15 K, TN¼ 288.15 K, rN¼ 1.225 kg/m3,
mN¼ 17.1�10�6 kg/(m s), Pr¼ 1, cp¼ 1004.5 J/(kg K) and various
values for uN, which are considered to be typical data for a gas flow.

Fig. 3 shows the velocity distribution within the boundary layer
ðf 0 ¼ u=uNÞ as a function of the similarity coordinate h. It can be
Fig. 7. Distribution of the production term by heat transfer of the entropy transport
equation as a function of h for a flow over a flat plate.



Fig. 8. Velocity fields between convergent and divergent parallel plates for a¼ 10� and
K¼�38,000, K¼�39,000 and K¼�70,000.

Fig. 10. Dimensionless temperature distribution Gð4Þ for a¼ 10� and different values
of K.
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seen that the flow velocity approaches the velocity of the free-
stream for large values of h.

Fig. 4 shows the distribution of the dimensionless entropy
difference across the boundary layer. The dimensionless entropy
difference has a monotonically decreasing shape and achieves the
boundary condition, given by equation (26) for large values of the
similarity coordinate. It is obvious from this figure that the
dimensionless entropy difference only weakly depends on MaN,
the Mach number of the flow. This result is due to the used simi-
larity coordinates given by equations (14) and (15). This coordinate
transformation is known to transform the boundary layer equations
for compressible flow into a form similar to those for an incom-
pressible flow. This means that compressibility effects denoted by
Fig. 9. Dimensionless velocity distribution Fð4Þ for a¼ 10� and different values of K.
the Mach number are already taken into account by the changed
coordinates and are, therefore, not strongly visible.

Figs. 5–7 show the individual terms in the entropy transport
equation (diffusion, dissipation and production by heat transfer). It
is interesting to note that the dissipation and heat conduction
terms have simple decreasing shapes, whereas, in the diffusion
term a local maximum takes place at about h¼ 1, except for
MaN ¼ 0:9. In general, the entropy diffusion shows large gradients
near the wall, which are clearly driven by the steep velocity and
temperature gradients near the wall. The difference between the
contours due to Mach number is small. This again might be
explained by the similarity coordinates used. For the dissipation
term, shown in Fig. 6, one sees that increasing Mach numbers seem
to move the region of high entropy dissipation away from the wall.
For MaN ¼ 0:9, for example, large values of ~sDiss appear for hz1,
whereas for MaN ¼ 0:1 large values of ~sDiss appear closer towards
the wall. For the entropy production by heat transfer (Fig. 7), no
significant change in the contours with changing Mach numbers
can be observed. This shows that this term is driven by the large
temperature gradients near the wall. Changes with growing Mach
numbers are again taken into account by using the transformed
coordinates.
Fig. 11. Distribution of the production term by heat transfer of the entropy transport
equation for Jeffery–Hamel flows for a¼ 10� and different values of K.



Fig. 12. Distribution of the dissipation term of the entropy transport equation for
Jeffery–Hamel flows for a¼ 10� and different values of K.
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3.2. Jeffery–Hamel flows

Jeffery–Hamel flows are interesting, because different flow
structures can be obtained by changing the convergence angle a of
the planar channel and the constant K in equation (28). Fig. 8 shows
three different examples for the flow fields between converging
and diverging planar channels. For the flow parameters set in
Fig. 8a one can see that a nozzle flow is obtained. Fig. 8b shows
a flow in a diverging channel where the velocity profile has a zero
tangent at the wall, whereas in Fig. 8c the flow in the diffusor is
already separated near the wall.

In Fig. 9 the velocity distributions are plotted as Fð4Þ ¼ rvr=n for
a channel with an opening angle of a ¼ 10+ as a function of the
similarity coordinate 4. One sees from Fig. 9 that the nozzle flow,
depicted in Fig. 8a, results in a form for the function F, which is
without deflection points. Furthermore, the function F attains
negative values for these kinds of flows, which indicates the flow
‘‘into the point source at r/0’’. For K¼�39,000 we obtain the flow
field shown schematically in Fig. 8b. In Fig. 9 one sees very clearly
the zero tangent of the velocity near the walls for a ¼ �10+. Fig. 10
shows the temperature distributions Gð4Þ ¼ cvr2=n2ðT � TWÞ for
the flow fields depicted in Fig. 9. It is very interesting to note that
the temperature profile in the diffuser Gð4Þ for K¼�39,000
changes sign for 4z� 4+, whereas this cannot be observed for the
non-dimensional temperature profile in the nozzle flow
(K¼�38,000). This change in sign of the local temperature profile
means also that the direction of heat flux is inverted between
0 � 4 � 4:1 and 4 	 4:1+. The individual terms of the entropy
transport equation are displayed in Figs. 11 and 12. Fig. 11 shows the
production term for heat transfer for different constants K. It can be
seen that for K¼�39,000 singularities appear in the distribution of
this term. This is caused for positions in the temperature field,
where the temperature differences are zero. Analogously, Fig. 12
shows the distribution of the dissipation term. It can be noticed that
the dissipation term is maximum near the walls. Both the
production term by heat transfer and the dissipation term have
singularities at the positions where the dimensionless temperature
is zero. This shows the interesting result that both these terms
attain now large values near the wall, but also near positions where
the direction of heat flux changes. This indicates that such positions
might always be related to high losses and should be avoided. In
addition, it seems so, that the appearance of these singularities
might be associated with the fact that the flow shown here is
unstable and nearly at the limit of flow separation.

4. Conclusions

The present paper addresses similarity solutions of the entropy
transport equation for laminar flows. Solutions have been shown
for two different flow cases, the flow over a flat plate and for flows
between convergent and divergent parallel plates. From the results
obtained, we draw the following conclusions:

� Similarity solutions of the entropy transport equations can be
obtained for similar flow and temperature fields. However, the
entropy transport equations might permit further restrictions
in obtaining also a similar entropy field.
� The similarity solutions of the entropy transport equation are

very helpful in examining the individual terms in the entropy
transport equation and help therefore to better understand
their behaviour.

The shown procedure can easily been extended for other similar
flow and temperature fields. The here obtained similarity solutions
might be very useful for analysing and validation of experimental
results on entropy production in boundary layers or in ducts.
Furthermore they can be used to check CFD codes for calculating
local entropy production.
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